419 research outputs found

    A Search for Interstellar CH2_2D+^+

    Full text link
    We report on a search for Interstellar CH2D+. Four transitions occur in easily accessible portions of the spectrum; we report on emission at the frequencies of these transitions toward high column density star-forming regions. While the observations can be interpreted as being consistent with a detection of the molecule, further observations will be needed to secure that identification. The CH2D+ rotational spectrum has not been measured to high accuracy. Lines are weak, as the dipole moment induced by the inclusion of deuterium in the molecule is small. Astronomical detection is favored by observations toward strongly deuterium-fractionated sources. However, enhanced deuteration is expected to be most significant at low temperatures. The sparseness of the available spectrum and the low excitation in regions of high fractionation make secure identification of CH2D+ difficult. Nonetheless, owing to the importance of CH3+ to interstellar chemistry, and the lack of rotational transitions of that molecule owing to its planar symmetric structure, a measure of its abundance would provide key data to astrochemical models.Comment: 2 pages, 1 figure, submitted to IAU Symposium 251, Organic Matte

    Photodissociation of interstellar ArH+

    Full text link
    Aims. Following the recent detection of 36ArH+ in the Crab nebula spectrum, we have computed the photodissociation rate of ArH+ in order to constrain the physical processes at work in this environment. Methods. Photodissociation cross sections of ArH+ are computed in an ab initio approach including explicit account of spin-orbit coupling. Results. We report the photodissociation cross section of ArH+ as a function of wavelength. Photodissociation probabilities are derived for different impinging radiation fields.The photodissociation probability of for a very small unshielded cloud surrounded on all sides by the unshielded InterStellar Radiation Field (ISRF) model described by Draine (1978) is equal to 9.9e-12 s-1 and 1.9e-9 s-1 in the Crab nebula conditions. The dependence on the visual extinction is obtained by using the Meudon Photon Dominated Region (PDR) code and corresponding analytical fits are provided. Conclusions. These data will help to produce a realistic chemical network to interpret the observations. Photodissociation of ArH+ is found to be moderate and the presence of this molecular ion is mainly dependent on the molecular fractionComment: 11 pages, 6 Figures, Accepted in Astronomy Astrophysic

    Isotopic fractionation of carbon, deuterium and nitrogen : a full chemical study

    Full text link
    Context. The increased sensitivity and high spectral resolution of millimeter telescopes allow the detection of an increasing number of isotopically substituted molecules in the interstellar medium. The 14N/ 15N ratio is difficult to measure directly for carbon containing molecules. Aims. We want to check the underlying hypothesis that the 13C/ 12C ratio of nitriles and isonitriles is equal to the elemental value via a chemical time dependent gas phase chemical model. Methods. We have built a chemical network containing D, 13C and 15N molecular species after a careful check of the possible fractionation reactions at work in the gas phase. Results. Model results obtained for 2 different physical conditions corresponding respectively to a moderately dense cloud in an early evolutionary stage and a dense depleted pre-stellar core tend to show that ammonia and its singly deuterated form are somewhat enriched in 15N, in agreement with observations. The 14N/ 15N ratio in N2H+ is found to be close to the elemental value, in contrast to previous models which obtain a significant enrichment, as we found that the fractionation reaction between 15N and N2H+ has a barrier in the entrance channel. The large values of the N2H+/15NNH+ and N2H+/ N15NH+ ratios derived in L1544 cannot be reproduced in our model. Finally we find that nitriles and isonitriles are in fact significantly depleted in 13C, questioning previous interpretations of observed C15N, HC15N and H15NC abundances from 13C containing isotopologues.Comment: 21 pages, 9 figures in the text, 3 Figures in the appendices. 7 tables in the text, 4 tables in the appendices. Accepted for publication by Astronomy Astrophysic

    Collisional excitation of singly deuterated ammonia NH2_2D by H2_2

    Get PDF
    The availability of collisional rate coefficients with H2_2 is a pre-requisite for interpretation of observations of molecules whose energy levels are populated under non local thermodynamical equilibrium conditions. In the current study, we present collisional rate coefficients for the NH2_2D / para--H2_2(J2=0,2J_2 = 0,2) collisional system, for energy levels up to Jτ=77J_\tau = 7_7 (EuE_u\sim735 K) and for gas temperatures in the range T=5300T = 5-300K. The cross sections are obtained using the essentially exact close--coupling (CC) formalism at low energy and at the highest energies, we used the coupled--states (CS) approximation. For the energy levels up to Jτ=42J_\tau = 4_2 (EuE_u\sim215 K), the cross sections obtained through the CS formalism are scaled according to a few CC reference points. These reference points are subsequently used to estimate the accuracy of the rate coefficients for higher levels, which is mainly limited by the use of the CS formalism. Considering the current potential energy surface, the rate coefficients are thus expected to be accurate to within 5\% for the levels below Jτ=42J_\tau = 4_2, while we estimate an accuracy of 30\% for higher levels

    CH2D+, the Search for the Holy Grail

    Full text link
    CH2D+, the singly deuterated counterpart of CH3+, offers an alternative way to mediate formation of deuterated species at temperatures of several tens of K, as compared to the release of deuterated species from grains. We report a longstanding observational search for this molecular ion, whose rotational spectroscopy is not yet completely secure. We summarize the main spectroscopic properties of this molecule and discuss the chemical network leading to the formation of CH2D+, with explicit account of the ortho/para forms of H2, H3+ and CH3+. Astrochemical models support the presence of this molecular ion in moderately warm environments at a marginal level.Comment: 25 pages, 6 Figures Accepted in Journal of Physical Chemistry A. "Oka Festschrift: Celebrating 45 years of Astrochemistry

    The IRAM-30m line survey of the Horsehead PDR: III. High abundance of complex (iso-)nitrile molecules in UV-illuminated gas

    Full text link
    Complex (iso-)nitrile molecules, such as CH3CN and HC3N, are relatively easily detected in our Galaxy and in other galaxies. We constrain their chemistry through observations of two positions in the Horsehead edge: the photo-dissociation region (PDR) and the dense, cold, and UV-shielded core just behind it. We systematically searched for lines of CH3CN, HC3N, C3N, and some of their isomers in our sensitive unbiased line survey at 3, 2, and 1mm. We derived column densities and abundances through Bayesian analysis using a large velocity gradient radiative transfer model. We report the first clear detection of CH3NC at millimeter wavelength. We detected 17 lines of CH3CN at the PDR and 6 at the dense core position, and we resolved its hyperfine structure for 3 lines. We detected 4 lines of HC3N, and C3N is clearly detected at the PDR position. We computed new electron collisional rate coefficients for CH3CN, and we found that including electron excitation reduces the derived column density by 40% at the PDR position. While CH3CN is 30 times more abundant in the PDR than in the dense core, HC3N has similar abundance at both positions. The isomeric ratio CH3NC/CH3CN is 0.15+-0.02. In the case of CH3CN, pure gas phase chemistry cannot reproduce the amount of CH3CN observed in the UV-illuminated gas. We propose that CH3CN gas phase abundance is enhanced when ice mantles of grains are destroyed through photo-desorption or thermal-evaporation in PDRs, and through sputtering in shocks. (abridged)Comment: Accepted for publication in Astronomy & Astrophysic

    A model for atomic and molecular interstellar gas: The Meudon PDR code

    Get PDF
    We present the revised ``Meudon'' model of Photon Dominated Region (PDR code), presently available on the web under the Gnu Public Licence at: http://aristote.obspm.fr/MIS. General organisation of the code is described down to a level that should allow most observers to use it as an interpretation tool with minimal help from our part. Two grids of models, one for low excitation diffuse clouds and one for dense highly illuminated clouds, are discussed, and some new results on PDR modelisation highlighted.Comment: accepted in ApJ sup

    Monitoring the Variable Interstellar Absorption toward HD 219188 with HST/STIS

    Full text link
    We discuss the results of continued spectroscopic monitoring of the variable intermediate-velocity (IV) absorption at v = -38 km/s toward HD 219188. After reaching maxima in mid-2000, the column densities of both Na I and Ca II in that IV component declined by factors >= 2 by the end of 2006. Comparisons between HST/STIS echelle spectra obtained in 2001, 2003, and 2004 and HST/GHRS echelle spectra obtained in 1994--1995 indicate the following: (1) The absorption from the dominant species S II, O I, Si II, and Fe II is roughly constant in all four sets of spectra -- suggesting that the total N(H) and the (mild) depletions have not changed significantly over a period of nearly ten years. (2) The column densities of the trace species C I (both ground and excited fine-structure states) and of the excited state C II* all increased by factors of 2--5 between 1995 and 2001 -- implying increases in the hydrogen density n_H (from about 20 cm^{-3} to about 45 cm^{-3}) and in the electron density n_e (by a factor >= 3) over that 6-year period. (3) The column densities of C I and C II* -- and the corresponding inferred n_H and n_e -- then decreased slightly between 2001 and 2004. (4) The changes in C I and C II* are very similar to those seen for Na I and Ca II. The relatively low total N(H) and the modest n_H suggest that the -38 km/s cloud toward HD 219188 is not a very dense knot or filament. Partial ionization of hydrogen appears to be responsible for the enhanced abundances of Na I, C I, Ca II, and C II*. In this case, the variations in those species appear to reflect differences in density and ionization [and not N(H)] over scales of tens of AU.Comment: 33 pages, 6 figures, aastex, accepted to Ap

    The hyperfine structure in the rotational spectrum of CF+

    Full text link
    Context. CF+ has recently been detected in the Horsehead and Orion Bar photo-dissociation regions. The J=1-0 line in the Horsehead is double-peaked in contrast to other millimeter lines. The origin of this double-peak profile may be kinematic or spectroscopic. Aims. We investigate the effect of hyperfine interactions due to the fluorine nucleus in CF+ on the rotational transitions. Methods. We compute the fluorine spin rotation constant of CF+ using high-level quantum chemical methods and determine the relative positions and intensities of each hyperfine component. This information is used to fit the theoretical hyperfine components to the observed CF+ line profiles, thereby employing the hyperfine fitting method in GILDAS. Results. The fluorine spin rotation constant of CF+ is 229.2 kHz. This way, the double-peaked CF+ line profiles are well fitted by the hyperfine components predicted by the calculations. The unusually large hyperfine splitting of the CF+ line therefore explains the shape of the lines detected in the Horsehead nebula, without invoking intricate kinematics in the UV-illuminated gas.Comment: 2 pages, 1 figure, Accepted for publication in A&

    Discovery of CH and OH in the -513 km s-1 Ejecta of Eta Carinae

    Full text link
    The very massive star, Eta Carinae, is enshrouded in an unusual complex of stellar ejecta, which is highly depleted in C and O, and enriched in He and N. This circumstellar gas gives rise to distinct absorption components corresponding to at least 20 different velocities along the line-of-sight. The velocity component at -513 kms-1 exhibits very low ionization with predominantly neutral species of iron-peak elements. Our statistical equilibrium/photoionization modeling indicates that the low temperature (T = 760 K) and high density (n_H=10^7 cm^-3) of the -513 kms-1 component is conducive to molecule formation including those with the elements C and O. Examination of echelle spectra obtained with the Space Telescope Imaging Spectrograph (STIS) aboard the confirms the model's predictions. The molecules, H_2, CH, and most likely OH, have been identified in the -513 kms-1 absorption spectrum. This paper presents the analysis of the HST/STIS spectra with the deduced column densities for CH, OH and C I, and upper limit for CO. It is quite extraordinary to see molecular species in a cool environment at such a high velocity. The sharp molecular and ionic absorptions in this extensively CNO- processed material offers us a unique environment for studying the chemistry, dust formation processes, and nucleosynthesis in the ejected layers of a highly evolved massive star.Comment: tentatively scheduled for the ApJ 1 September 2005, v630, 1 issu
    corecore